Structure and function of ryanodine receptors.
نویسندگان
چکیده
Membrane depolarization, neurotransmitters, and hormones evoke a release of Ca2+ from intracellular Ca(2+)-storing organelles like the endoplasmic reticulum and, in muscle, the sarcoplasmic reticulum (SR). In turn, the released Ca2+ serves to trigger a variety of cellular responses. The presence of Ca2+ pumps to replenish intracellular stores was described more than 20 years ago. The presence of Ca2+ channels, like the ryanodine receptor, which suddenly release the organelle-stored Ca2+, is a more recent finding. This review describes the progress made in the last five years on the structure, function, and regulation of the ryanodine receptor. Numerous reports have described the response of ryanodine receptors to cellular ions and metabolites, kinases and other proteins, and pharmacological agents. In many cases, comparative measurements have been made using Ca2+ fluxes in SR vesicles, single-channel recordings in planar bilayers, and radioligand binding assays using [3H]ryanodine. These techniques have helped to relate the activity of single ryanodine receptors to global changes in the SR Ca2+ permeability. Molecular information on functional domains within the primary structure of the ryanodine receptor is also available. There are at least three ryanodine receptor isoforms in various tissues. Some cells, such as amphibian muscle cells, express more than a single isoform. The diversity of ligands known to modulate gating and the diversity of tissues known to express the protein suggest that the ryanodine receptor has the potential to participate in many types of cell stimulus-Ca(2+)-release coupling mechanisms.
منابع مشابه
The neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β
Objective: Cinnamaldehyde may be responsible for some health benefits of cinnamon such as its neuroprotective effects. We aimed to investigate the cinnamaldehyde neuroprotective effects against amyloid beta (Aβ) in neuronal SHSY5Y cells and evaluate the contribution of N-methyl-D-aspartate (NMDA), ryanodine, and adenosine receptors and glycogen ...
متن کاملAmelioration of Pentylenetetrazole-Induced Seizures by Modulators of Sigma, N-Methyl-D-Aspartate, and Ryanodine Receptors in Mice
Background: Sigma receptors, N-methyl-D-aspartate (NMDA) antagonist, and modulators of intracellular calcium may be useful for seizure control. Therefore, we aimed to evaluate the antiepileptic effects of opipramol, a sigma receptor agonist, against pentylenetetrazole (PTZ)-induced seizures in mice and assess ketamine and caffeine interaction with the antiepileptic effects of opipramol.Methods:...
متن کاملShielding Effect of Ryanodine Receptor Modulator in Rat Model of Autism
Introduction: A neurodevelopmental disorder, autism typically identified with three primary behavioral consequences, such as social impairment, communication problems and limited or stereotypical behavior. Because of its co-morbidity and lack of therapeutic options, autism is a global economic burden. A short chain of fatty acid, propionic acid formed biologically by gut microbiome. Propionic a...
متن کاملCrystal structures of the N-terminal domains of cardiac and skeletal muscle ryanodine receptors: insights into disease mutations.
Ryanodine receptors (RyRs) are channels governing the release of Ca(2+) from the sarcoplasmic or endoplasmic reticulum. They are required for the contraction of both skeletal (RyR1) and cardiac (RyR2) muscles. Mutations in both RyR1 and RyR2 have been associated with severe genetic disorders, but high-resolution data describing the disease variants in detail have been lacking. Here we present t...
متن کاملRyanodine receptors: structure, expression, molecular details, and function in calcium release.
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 266 6 Pt 1 شماره
صفحات -
تاریخ انتشار 1994